Graph Theory, Spring 2016, Homework 2

1. Show that G is connected if and only if we cannot find nonempty subgraphs H_{1}, H_{2} such that G is a disjoint union of H_{1} and H_{2}.
2. Recall that $c(G)$ is the number of components of the graph G, and for a vertex $v \in V_{G}, G-v$ is the graph obtained by removing the vertex v and all its incident edges (more formall, $G-v=G\left[V_{G} \backslash\{v\}\right]$. Suppose G is a graph and $v \in V_{G}$ with $\operatorname{deg}(v)=1$. Then show that $c(G)=c(G-v)$.
3. Recall that a bridge is an edge e in a graph G such that $c(G-e)>c(G)$. Show that if G has 7 vertices and is connected, then it must have at least 6 edges.
4. Show that if a simple graph G has 7 vertices, and at least 16 edges, then it must be connected, and if it has 7 vertices and at least 17 edges, then it cannot have any bridges.
5. (6000 level) More generally, show that if a simple graph G satisfies $e(G)>\binom{v(G)-1}{2}$ then it must be connected, and if $e(G)>\binom{v(G)-1}{2}+1$ then it cannot have any bridges.
6. Consider the following graph, with weights assigned to the edges:

Apply Dijkstra's algorithm to find a minimal path from the vertex H to the vertex B. Illustrate the sequence of graphs T_{0}, T_{1}, \ldots which arise during the process.
7. (6000 level) Suppose that one uses Dijkstra's algorithm to, starting from a vertex v in a graph G, construct a tree $T<G$ containing a minimal length path from the vertex v to some other vertex $w \in V_{G}$.
(a) If $v^{\prime} \in V_{T}$, and if W is a $\left(v^{\prime}, w\right)$ path in T which does not pass through v, is $\ell(W)=d\left(v^{\prime}, w\right)$? That is, is W a minimal path from v^{\prime} to w ?
(b) As with the notation of the previous question, let U be the unique path in T from v to w and U^{\prime} the unique path in T from v to v^{\prime}. Let $H<G$ be the subgraph obtained as the union of the paths U and U^{\prime}.
Show that W in the previous part must be minimal if every vertex of H has degree at most 2 in H.

