Graph Theory, Spring 2016, Homework 4

1. Let G be a graph and $e \in E_{G}$. If e is incident to vertices u, v (not necessarily distinct), let G / e denote the graph $G /\{u, v\}$.
Show that if G is a graph is k-connected, then G / e is $(k-1)$-connected.
2. Show that if a simple connected graph contains a cycle, then it must contain at least 3 distinct spanning subtrees.
3. Suppose that a simple connected graph G contains 10 vertices and 11 edges. Show it is possible for number of cycles in G to be 2 or 3 but that no other value is possible.
4. A graph G is called bipartite if we may partition the set of vertices into two nonempty disjoint parts $V(G)=V_{1} \cup V_{2}$, such that whenever two vertices v, w are in the same part V_{i}, we have that v and w are nonadjacent. In other words, the only edges in the graph are those which connect vertices in different parts. Show that if G is a tree with at least 2 vertices then G is bipartite.
