Graph Theory, Spring 2016, Homework 8

1. Let D be a digraph and $x, y \in V_{D}$. We say that $S \subset A_{D}$ is an (x, y)-arrow cut if $D-S$ contains no directed (x, y)-paths. We say that is minimal if there is no (x, y)-arrow cut S^{\prime} with S^{\prime} a proper subset of S.
If X, Y are subsets of V_{D}, we write $[X, Y]$ to denote the set of all arrows of A_{D} whose source is a vertex in X and whose target is a vertex in Y.
Show that if K is a minimal (x, y)-arrow cut, then we can partition the vertices of V_{D} as $V_{D}=X \cup Y$ with $x \in X, y \in Y$ and $X \cap Y=\emptyset$, and with $K=[X, Y]$.
2. Suppose that D is as in the previous problem, and that K is a minimal (x, y) arrow cut. Give an algorithm for producing the sets X and Y as above.
3. (bonus points) Suppose that D is as above. Characterize which partitions $X \cup Y=V_{D}$ correspond to minimal (x, y) cuts.
