Worksheet for graph theory lecture 13

Given the graph below, draw the following edge induced subgraphs (see lecture 9):
$G[\{a, b, e\}], G[\{a, b, f, g, h\}]$
Also, with the same graph, find subsets $S_{1}, S_{2} \subset E[G]$ such that $G\left[S_{1}\right], G\left[S_{2}\right]$ are the blocks of G.

Problem (corrected!): Suppose that v is a cut vertex in a graph G, and let $H_{1}, H_{2}, H_{3}, \ldots, H_{k}$ be the different components in $G-v$. Show that if $C \subset G$ is a cycle containing v, then C can only intersect one of these components -- ie. $C \cap H_{i}=\emptyset$ for all but one value of i.

Problem: Show that if e is an edge in G, then G is nonseparable if and only if $G[[e]]$ is nonseparable.

Problem: Show that if G is nonseparable, than any two edges lie on a common cycle (use the subdivision strategy of the video).

