Graph Theory Practice Sheet for Midterm 2

This sheet is not meant to be exhaustive, but rather as a supplement to the problems from the homework since the last exam.

1. This is a problem in the direction of Vizing's Theorem. Show that for a graph G, you can always color it using at most $2 \Delta-1$ colors. As a hint, you should think about the simple vertex coloring algorithm and how it worked.
2. This problem is the direction of Brook's Theorem. Suppose that G is a graph, v is a cut vertex and $G_{1}, G_{2}, \ldots, G_{k}$ are the components of $G-v$. Show that if $\chi\left(G_{i}\right)$ is less than $\Delta(G)$ for each i, then we will also have $\chi(G) \leq \Delta$.
3. Can you draw a graph with $\chi(G)=4$ and with the graph containing no triangles? If you can, do it. If not, say why not.
4. Draw a graph with $\kappa(G)=2, \lambda(G)=2$ and $\delta(G)=3$ (or show no such graph exists).
5. In the graph shown below, exhibit a minimum $u-v$ vertex cut and a minimal $u-v$ vertex cut which isn't minimum. How can you tell that your minimum vertex cut is actually minimum?

6. Find all cut vertices and blocks in the graph below:

