The Plot
hare some papulation w/ sone featives (paramates) e.g. rean μ, variane σ^{2}
tale smeasments X_{k}-, X_{n} iid
Calculate sample wean $\bar{X}=\frac{\sum X_{i}}{n}$ aski how well daes \bar{x} apprasmant μ ?

Goali wart a statemet:
we ve a5\% certin that
is Letween $\bar{x}-3: \bar{x}+3$
i.e. $P(\bar{x}-3 \leqslant \mu \leqslant \bar{x}+3)=.95$
guen \bar{x} measped ocle of \bar{X} ve're 95% cestom that $\bar{x}-3 \leq \mu \leq \bar{x}+3$.
Del If we hae sare parento θ har ourpopulaton! random vas $\hat{\theta}_{1}, \hat{\theta}_{2}$ soch that

$$
P\left(\hat{\theta}_{1}<\theta<\hat{\theta}_{2}\right)=1-\alpha
$$

and if $\hat{\theta}_{1}, \hat{\theta}_{2}$ me measued vales to $\hat{\theta}_{1} \leqslant \hat{\theta}_{2}$ then we say $\hat{\theta}_{1} \leqslant \theta \leqslant \hat{\theta}_{2}$ is a $1-\alpha$ cortiduce introal
for θ. re say $\hat{\theta}_{1}, \hat{\theta}_{2}$ are the low supper contidure lints and $1-\alpha$ the dyes of cantidure.

Notes these are notuniae.

Example
population mean $\mu \quad\left(\right.$ known $\left.\sigma^{2}\right)$
\bar{X} if n is large $\bar{X} \approx$ normal random var.

$$
\left.\begin{array}{l}
\mu(\bar{x})=\mu \\
\operatorname{var}(\bar{x})=\frac{1}{n} \sigma^{2}
\end{array}\right\} \quad \frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=Z
$$

